首页> 外文OA文献 >Exploiting Problem Structure in Optimization under Uncertainty via Online Convex Optimization
【2h】

Exploiting Problem Structure in Optimization under Uncertainty via Online Convex Optimization

机译:利用不确定性开发优化问题的结构   在线凸优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider two paradigms that are developed to account foruncertainty in optimization models: robust optimization (RO) and jointestimation-optimization (JEO). We examine recent developments on efficient andscalable iterative first-order methods for these problems, and show that theseiterative methods can be viewed through the lens of online convex optimization(OCO). The standard OCO framework has seen much success for its ability tohandle decision-making in dynamic, uncertain, and even adversarialenvironments. Nevertheless, our applications of interest present furtherflexibility in OCO via three simple modifications to standard OCO assumptions:we introduce two new concepts of weighted regret and online saddle pointproblems and study the possibility of making lookahead (anticipatory)decisions. Our analyses demonstrate that these flexibilities introduced intothe OCO framework have significant consequences whenever they are applicable.For example, in the strongly convex case, minimizing unweighted regret has aproven optimal bound of $O(\log(T)/T)$, whereas we show that a bound of$O(1/T)$ is possible when we consider weighted regret. Similarly, for thesmooth case, considering $1$-lookahead decisions results in a $O(1/T)$ bound,compared to $O(1/\sqrt{T})$ in the standard OCO setting. Consequently, theseOCO tools are instrumental in exploiting structural properties of functions andresulting in improved convergence rates for RO and JEO. In certain cases, ourresults for RO and JEO match the best known or optimal rates in thecorresponding problem classes without data uncertainty.
机译:在本文中,我们考虑开发出两个用于解释优化模型中不确定性的范例:鲁棒优化(RO)和联合估计优化(JEO)。我们研究了针对这些问题的有效且可扩展的迭代一阶方法的最新进展,并表明可以通过在线凸优化(OCO)的视角来查看这些迭代方法。标准的OCO框架因其在动态,不确定甚至竞争环境中处理决策的能力而获得了巨大成功。然而,我们感兴趣的应用程序通过对标准OCO假设的三个简单修改来在OCO中提供了更高的灵活性:我们引入了加权后悔和在线鞍点问题这两个新概念,并研究了做出前瞻性(预期)决策的可能性。我们的分析表明,引入OCO框架的这些灵活性在适用时都会产生重大后果,例如,在强凸情况下,最小化未加权后悔已证明了$ O(\ log(T)/ T)$的最优界限,而我们表示当我们考虑加权后悔时,$ O(1 / T)$的边界是可能的。同样,对于平稳的情况,考虑$ 1 $的超前决策会导致$ O(1 / T)$界线,而在标准OCO设置中,这是$ O(1 / \ sqrt {T})$。因此,这些OCO工具有助于开发功能的结构特性并提高RO和JEO的收敛速度。在某些情况下,我们的RO和JEO结果与相应问题类别中的最佳已知或最佳比率匹配,而没有数据不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号